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ABSTRACT: Thermal management in polymeric composite
materials has become increasingly critical in the air-vehicle
industry because of the increasing thermal load in small-
scale composite devices extensively used in electronics and
aerospace systems. The thermal transport phenomenon in these
small-scale heterogeneous systems is essentially controlled by
the interface thermal resistance because of the large surface-to-
volume ratio. In this review article, several modeling strategies
are discussed for different length scales, complemented by our
experimental efforts to tailor the thermal transport properties
of polymeric composite materials. Progress in the molecular
modeling of thermal transport in thermosets is reviewed along
with a discussion on the interface thermal resistance between functionalized carbon nanotube and epoxy resin systems. For the thermal
transport in fiber-reinforced composites, various micromechanics-based analytical and numerical modeling schemes are reviewed in
predicting the transverse thermal conductivity. Numerical schemes used to realize and scale the interface thermal resistance and the
finite mean free path of the energy carrier in the mesoscale are discussed in the frame of the lattice Boltzmann−Peierls−Callaway
equation. Finally, guided by modeling, complementary experimental efforts are discussed for exfoliated graphite and vertically aligned
nanotubes based composites toward improving their effective thermal conductivity by tailoring interface thermal resistance.

KEYWORDS: thermal management, interface thermal resistance, multiscale modeling, nanocomposites, thermal conductivity,
thermal interface materials

1. INTRODUCTION
Nonmetallic (polymeric) composites with various forms of
fiber reinforcement are extensively used from printed circuit
boards to aerospace systems. The thermal loads (excess heat) in
all electronic and aerospace systems (aircrafts and spacecrafts)
have been steadily increasing at an alarming rate. Traditionally,
composites have been used thus far as load-bearing structural
components. However, their thermal transport properties
(characteristics for transporting thermal load) are inadequate
to avert local heating. In view of managing the excess thermal
loads generated by thermal devices in aerospace systems, there
is an increasing emphasis on tailoring thermal transport
properties of composite materials. The anticipated pay-off of
improving the thermal properties of composites is primarily in
the significant weight savings for the aerospace systems, as
compared to metallic materials. As an example, in carbon fiber
reinforced polymeric composites, continuous carbon fibers
(either in laminated or woven form) are embedded in the

polymer matrix. The axial thermal conductivity of carbon fibers
is known to be quite high; ranging from 20 W/m-K (for Pan
carbon fiber) to 1000 W/m-K for pitch carbon fiber (for
example, 900−1000 W/m-K for Thornel K1100 pitch fiber).
Thus, the in-plane thermal conductivity of carbon fiber
composites (the plane containing the fiber axis) varies between
10 W/m-K to 500 W/m-K, which is significantly high
compared to its transverse conductivity (often less than
1 W/m-K. A primary reason for the poor transverse
(perpendicular to the fiber axis) thermal conductivity of
composites is the fact that the fibers are embedded in a
polymeric matrix phase, which is primarily an insulator (whose
thermal conductivity is in the range of 0.2−0.3 W/m-K).
Furthermore, phonon scattering due to the existence of
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significant impedance mismatch at the interface between the
fiber and the matrix also contributes to the reduction of its
transverse thermal conductivity.
To make polymer matrix composites viable for thermal

applications, their through-thickness (i.e., perpendicular to the
fiber axis) thermal conductivity needs to be significantly
enhanced. Thus, it is logical to introduce a conductive phase
in the matrix to facilitate thermal pathways to overcome this
deficiency. There have been numerous studies of dispersing
CNTs in polymers to enhance the thermal conductivity of the
polymeric phase.1−3 The improvements, however, have been
very limited, only up to 120%, which do not meet any of the
application requirements mentioned earlier. The primary reason
of this very limited improvement in the conductivity is due to
phonon scattering at the CNT−polymer interface caused by the
enormous acoustic mismatch between CNT tips/walls and
polymer.4 Thus, terminating the CNT tips in the polymer is not
a viable option for significantly enhancing thermal conductivity
in composites through the polymer phase. A possible way to
significantly enhance the transverse (i.e., through-thickness)
thermal transport in polymer matrix composites is to somehow
establish a conductive pathway through the polymer matrix
phase between the adjacent fibers.
This article puts forward modeling strategies at various length

scales and experimental approaches to address this very question
of tailoring the transverse thermal conductivity in polymeric
composite materials. The article is divided into four broad sections.
First, the fundamental mechanisms of thermal transport in cured
epoxy network systems is discussed from an atomistic modeling
perspective along with how one can estimate thermal interface
resistance at CNT−epoxy interfaces. In the second section,
analytical and numerical approaches, based on micromechanical
modeling, are presented to address the effective thermal
conductivity of fiber-reinforced composites. The third section
discusses a mesoscopic treatment of thermal transport composite
modeling within the framework of the lattice Boltzmann equation.
In the fourth and final section, experimental efforts are presented
as a validation of the theoretical ideas presented through two
representative studies on how the functionalization of dispersed
graphite flakes and anisotropy can enhance the through-thickness
thermal conductivity by tailoring the interface thermal resistance.
To acquaint our readers with the various modeling approaches
used in different sections, we give an overview of each method’s
background and associated fundamentals, followed by the
aforementioned studies at different length scales.

2. THERMAL TRANSPORT CHARACTERIZATION
THROUGH ATOMISTIC MODELING
2.1. Brief Overview of Equilibrium Molecular Dynam-

ics (EMD) Simulations. Equilibrium MD, also known as the
Green−Kubo (GK) approach, is based on the fluctuation−
dissipation theorem and relates the fluctuations in a thermo-
dynamic system to its linear response properties5 through an
autocorrelation function. A few of such examples include the
diffusion coefficient, thermal conductivity, electrical conductiv-
ity, viscosity, etc. In particular, the thermal conductivity, k,
within this formalism, is calculated by integrating the time
autocorrelation function of instantaneous heat flux and is given
by following equation.
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Here, J(t) is the heat flux vector at time t. In addition, V and T
represent the volume and temperature of the system,
respectively, whereas kB is the Boltzmann constant. In terms
of the molecular dynamics entities, J(t) can be written as

∑=
=

t
d
dt

r EJ( )
i

N

i i
1 (2)

where

∑= +
≠

E m v u r
1
2

1
2

( )i i i
j i

N

ij
2

Here, mi and vi represent the mass and velocity of atom i, u(rij)
is the total potential energy of atom i, and rij is the distance
between atom i and j. In most cases, an analytic form of J(t) is
used which generally depend upon the form of interaction
potential u(rij) employed in the simulations. In terms of
observable molecular variables, the detailed expression for the
microscopic heat current vector J(t) becomes
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In the above equation, Fij represents the short-range van der
Waals force and the real part of the Ewald-coulomb force. These
forces are computed in real space, whereas tensor S is evaluated
in Fourier space. The elements of tensor S are written as
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where α and β denote the direction in reciprocal space, k
represents the reciprocal vector, RC represents an Ewald
parameter, and i and j are atom indices. In addition, Zi denotes
the charge on atom i. A detailed discussion for the inclusion of
tensor S in the heat current vector has been reported
elsewhere.6 Here, it is sufficient to say that it is introduced in
order to avoid divergences arising from the long-range columbic
interactions and takes care of forces due to long-range columbic
interactions in Fourier space.

2.2. Brief Overview of Non-Equilibrium Molecular
Dynamics (NEMD) Simulations. Nonequilibrium MD
simulations provide an alternative approach to estimate thermal
conductivity within an MD framework.7 It is also known as the
“direct method” and has its origin in Fourier law of thermal
conduction. The thermal conductivity, k, can be estimated as

= Δ
k

Q A t
dT dz

/
/ (6)

Here, Q/AΔt is the heat flux through a specified cross-section,
A, and dT/dz is the steady-state temperature gradient. Under
this formalism, there are two well-known methods used to
calculate thermal conductivity, k, termed as constant temper-
ature method and constant heat method. Although the
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preparation for the initial condition for performing NEMD
simulation is same, they differ in how the heat flux is maintained
and evaluated during the course of the simulation. For both
approaches, first, the system of interest is created as a long, thin
slab along one direction and equilibrated at the desired temp-
erature and pressure. Next, the slab is divided into a predefined
number of bins for the temperature profile calculation.
In the constant temperature approach, a few bins (known a

priori) in the central region of the slab are thermostatted to
the desired temperature, Thigh, whereas the end boundaries are
kept at a relatively low temperature Tlow, through a separate
thermostat. To keep the regions at their specified temperatures,
energy is continuously added and removed from the hot and
cold region, respectively, during the course of the simulation.
Various thermostats, such as Nose-Hoover and temperature
rescaling, are often used for temperature control. On the other
hand, in the constant heat approach, a constant amount of
energy is added and taken off from well separated, predefined
bins (also called “hot” and “cold” regions), similar to those
discussed above. This is either achieved by adding (removing)
given energy (known a priori) to the hot (cold) region, or
exchanging velocities of the hottest and coldest atoms in “hot”
and “cold” bins. The latter approach is also famously known as
the reverse-NEMD approach.8 Along with energy exchange
(Q), its frequency and the cross-sectional area under
consideration provide us with the value of the heat flux, Q/AΔt.
By applying any of the aforementioned methods, a temp-

erature gradient is established across the slab over time. The
temperature of each bin within the slab can be calculated as
follows.7

∑=
=

T
N k

m v
1

3i
i k

N

k k
B 1

2
i

(7)

where, Ni is the number of atoms in the ith slab. Furthermore,
the calculated temperature of each slab, Ti, is averaged over
several pico-seconds to get a smooth temperature profile.
Finally, the temperature gradient is calculated from the slope
of the resulting temperature profile. Once the temperature
gradient and the heat flux are known, the thermal conductivity
is calculated using eq 6.
2.3. Thermal Conductivity of Epoxy Networks from

Molecular Modeling. To gain fundamental insights toward
mechanisms of thermal conduction in epoxy composites, the
thermal conductivity of epoxy networks and their un-cross-
linked constitutive elements was modeled using both
equilibrium MD and nonequilibrium MD simulations. EPON-
862 and DEDTA (epicure-W) were chosen as a representative
epoxy and curing agent. Its cross-linked network, comprised
of these two components, was also developed from scratch
(details are reported elsewhere9,10). The CVFF force field11 was
employed as this force-field predicted accurate thermodynamic
properties of the cross-linked network structure.
For NEMD simulations, the length of the slab geometry

was ∼37 nm with a cross-sectional area of ∼5.5 nm2. Here, the
constant temperature methodology was employed, in which
the Thigh and Tlow were kept at 350 and 250 K, respectively.
The temperature of the thermostatted bins was controlled
using velocity-rescaling criterion. The temperature gradient
was calculated by fitting the temperature profile along the slab.
Incorporating the heat flux, as calculated from velocity
rescaling, the thermal conductivities of DETDA, EPON-862
and their cross-linked network was predicted to be 0.20, 0.21,

and 0.30 W/m-K, respectively. Although the experimental
values of thermal conductivities of DETDA and uncross-linked
EPON-862 were not found it literature, the thermal
conductivity of cross-linked epoxy network has been mentioned
to be between 0.2 and 0.3 W/m-K.12

For equilibrium MD simulations, a cubic cross-linked system
was employed with a linear dimension of ∼4.5 nm (∼7500
atoms). Here, the simulations were run in the NVE ensemble
for 4 ns at 300 K and data collection for coordinates, velocities
and forces was performed every step (1 fs). Figure 1 shows the

plot of thermal conductivity as a function of time, as evaluated
from integrating the heat flux autocorrelation function. For all
cases, the thermal conductivity was found to first increase,
then decrease and become constant at longer times when the
autocorrelation function decays down to zero. The thermal
conductivities for DETDA, EPON-862 and the cross-linked
network were calculated to be 0.27, 0.25, and 0.31 W/m-K.
Comparing results from equilibrium and nonequilibrium
molecular dynamics simulations, a good agreement between
both approaches was found. However, the results from EMD
simulations were found to be slightly higher than those from
NEMD simulations for all cases. Although size effects for
NEMD simulations were not considered because of computa-
tional limitations, an EMD simulation of the cross-linked
network was performed for a system twice as big as the previous
system with ∼15 000 atoms. The estimated thermal conductivity
value was found to be ∼0.32 W/m-K, in excellent agreement
with the smaller cross-linked system, providing us with sufficient
evidence that studied system sizes through EMD simulations
were large enough for the estimation of thermal conductivity for
the cross-linked system.
The power spectra of the cross-linked network structure was

also calculated, as shown in Figure 2, for various atomic entities
as partial vibrational density of states (PVDOS). It can be seen
that each subfigure has several peaks for each atomic type. The
high-frequency peaks represent different vibrations (stretching,
bending, etc.) in which the corresponding atomic entity is
involved. These high-frequency vibrations in polymeric glasses
are known to be hardly involved in thermal transport, as these
modes are localized with negligible thermal diffusivity.13 The
figure also presents a broad low-frequency peak that is present
for all the atomic entities. Generally, these peaks are associated

Figure 1. Normalized heat flux autocorrelation function and resultant
thermal conductivity values for various studied systems: (a) cross-
linked network; (b) EPON-862; (c) cross-linked DETDA.
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with low-frequency modes of vibrations, known to be
significant for thermal conduction due to their nonzero thermal
diffusivity.13 For the system of interest, one such broad peak
was seen, present in the power spectra of all atomic entities.
The similar position of the peak for all atomic types suggests
that a significant number of different types of atoms are perhaps
collectively involved in these low-frequency vibrations. The
broadness of the peak over several THz suggests a possible
distribution of relaxation times with different overlapping low-
frequency vibrational modes. The broad nature of the low-
frequency peak can be attributed to the amorphous nature of
the studied polymer network system as also observed recently
by Shenogin et al.13

2.4. Pair Contribution Analysis. Although NEMD simula-
tions predict thermal transport properties in a straightforward
manner, equilibrium MD simulations provide many additional
details behind the origin of low thermal conductivity, such as
the contributions of different types of interactions toward
thermal conductivity. Equation 3 shows that the heat flux is
indeed comprised of several convective and virial terms. These
terms are associated with (a) kinetic energy; (b) van der Waals

potential energy; (c) electrostatic potential energy; (d) forces
due to van der Waals interactions; (e) forces due to electro-
static interactions (within a certain cutoff, calculated in real
space); (f) forces due to long-range electrostatic interactions
(outside the cutoff, calculated in Fourier space); (g) bond
stretching forces; and (h) angle bending forces. Note that terms
a−c are convective, whereas d−h are virial in nature.
To capture different contributions, we evaluated each term in

eq 3 separately and stored it at each time step during the course
of the simulation. As an example, to evaluate the thermal
conductivity due to kinetic and potential energy contributions
only, we summed the terms associated with a and b when
calculating the heat flux, while ignoring all other terms. The
most important findings that emerge from this analysis are
presented in the form of pie charts in Figure 3.
Upon careful analysis, the contributions from virial terms were

found to have a dominating effect compared to convective terms
and are in agreement with previous literature on ionic systems.14

Moreover, the cross-correlation between convective and virial
terms was found to be insignificant. The forces due to van der
Waals interactions were found to be the most dominating among
the different virial contributions to thermal conductivity while
the contributions from the bonded terms are negligible. In
addition, the contributions from long-range electrostatic forces to
the overall thermal conductivity were also found to be negligible.
This suggests that such contributions can be neglected while
doing thermal analysis for organic, neutral polymeric systems.
In summary, the aforementioned analysis suggests that the

dominant mode of heat transport for disordered amorphous
polymeric materials is due to van der Waals interactions and their
corresponding forces. These interactions result in anharmonic
modes of vibrations, contributing toward a low value of thermal
conductivity for polymeric networks. These results are in
agreement with a recent study which suggests that anharmonic
interactions contribute significantly toward thermal conductivity
in polymeric glasses.13 It is also suggested that in polymeric
glasses, a large fraction of vibrational modes (especially high-
frequency vibrational modes) are localized with negligible
thermal diffusivity. Keeping that in mind, contributions from
these vibrational modes toward thermal conductivity are
expected to be insignificant. This is also in agreement with the

Figure 2. Vibrational density of states for: (a) sp2 benzene carbon; (b)
amine nitrogen; (c) ether and hydroxyl oxygen; and (d) sp3 carbon in
methyl and methylene groups in cured epoxy network.

Figure 3. Contribution analysis toward thermal conductivity from different heat flux components.
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results where negligible contributions from bonded interactions
were found.
2.5. Prediction of Thermal Interface Conductance:

Effect of Functionalization. When carbon nanotubes are
added as a filler to an epoxy matrix, the resultant nano-
composites show a marginal increase in composite thermal
conductivity.1,2 This is primarily attributed to the thermal
resistance at the CNT-matrix interface, also known as Kapitza
resistance.15 Atomistic simulations were performed to deter-
mine if this resistance can be modified through functionaliza-
tion of the nanotubes.
All simulations were performed using the LAMMPS MD

package with CVFF force field. For this study, a system was
developed within Materials Studio; by randomly placing 512
EPON-862 molecules and 256 DETDA molecules around a
(10,0) carbon nanotube. The functionalization of the nanotube
with DETDA molecules was performed using the dynamic
cross-linking algorithm.9 The functionalized nanotube and the
representative system are shown in Figure 4a. The initial system

was equilibrated in NVT and NPT ensembles at 300 K and
atmospheric pressure for 100 ps with a time step of 1 fs.
To measure interface thermal conductance, we divided each

system into 12 concentric cylindrical shells of equal width (3 Å)
with the nanotube at the center. Here, constant energy at the rate

of ∼5 × 10−8 J/s was added at the source (CNT) with the same
amount removed at the sink (outermost shell) as shown in
Figure 4b, thus creating a radial temperature gradient. The
average temperature for each cylindrical shell was then calculated
using eq 7. The Kapitza conductance was then estimated from
the applied heat flux and the temperature drop at the CNT−
matrix interface.
The radial temperature profiles for each system as a function

of CNT functionalization (up to 2.5%) is plotted in Figure 5a.
The analysis of the plot reveals a sharp discontinuity at the
nanotube-matrix interface. Although the error bars associated
with steady-state bin temperatures are significant, it is clear
that there is a specific trend in ΔT with respect to CNT func-
tionalization. For a constant value of thermal in/out flux (∼5 ×
10−8 J/s), the plot shows that CNT functionalization leads
to the reduction in temperature discontinuity or higher thermal
energy transfer between the transverse CNT walls and the
matrix. The resulting Kapitza conductance (interface thermal
conductance) is plotted in Figure 5b.
The results for unfunctionalized as well as functionalized

(0.77−2.5 × 10−8 m2-K/W) CNT interface boundary resistance
are in excellent agreement with previously reported values
in experiments as well as simulations.16 After fitting the
conductance data with the least-squares method, the Kaptiza
conductance was found to follow a linear increase with the
degree of functionalization up to 2.5% CNT functionalization.
The current study clearly shows that functionalization of CNTs
increases the thermal transfer between highly conductive
nanotubes and the surrounding matrix. Effective composite
thermal conductivity depends—in addition to the interface
thermal resistance—on the conductivity of the nanofillers such
as CNTs. Although the functionalization of CNTs increases
the conductance at the interface by providing additional
channels for thermal transport, it also introduces defects in
high thermally conductive CNTs. These defects act as
scattering points for coherent vibrations along the nanotube
and reduce overall conductivity of the CNTs significantly.
Hence, the functionalization of CNTs is expected to result in
two competing effects, i.e., increased interface conductance and
reduced filler conductivity, which eventually determine the
effective system-level thermal conductivity of the composite
material.

Figure 4. (a) Schematic of a nanotube, functionalized with cross-linker
DETDA. (b) Schematic of CNT−epoxy matrix as a heat source and
sink system. The CNT (in red) signify the heat source, whereas the
outermost blue shell of 3 Å width corresponds to heat sink.

Figure 5. (a) Radial distribution of system temperature in steady state conditions for several degree of CNT-functionalization for epoxy matrix.
Color scheme: black (0), red (1), green (2), blue (4), yellow (5), brown (6), turquoise (10). Inset: Temperature drop at the CNT−matrix interface
vs degree of functionalization. (b) Interface thermal conductance for several degree of CNT functionalization.
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3. MICROMECHANICAL ANALYSIS FOR THE
PREDICTION OF EFFECTIVE THERMAL
CONDUCTIVITY OF COMPOSITES

In the previous section, the effect of fillers, such as CNTs, in
the polymer matrix on the thermal transport characteristics
was reviewed toward modifying thermal properties of the
matrix phase in composites. In addition to the modified matrix
phase, traditional fiber reinforcements in composites also
influence its thermal properties. This section reviews
analytical and numerical studies for the prediction of effective
thermal conductivities of fiber-reinforced composite materials
using continuum-based micromechanical approaches. This
micromechanical analysis discretely models fiber and matrix
constituents in the composites as well as their interfacial
thermal resistance. Figure 6 shows a schematic of the micro-
mechanical modeling used for the calculation of the effec-
tive thermal conductivities of composites. A cross-section of
composites is typically modeled with idealized regularly
distributed arrays of fibers in either square or hexagonal
patterns, and the model can further be simplified to a
representative unitcell model as a repeating block. Alter-
natively, randomly distributed fibers can be simulated with
the random array model, whose fiber distributions can be
obtained by either optical microscopic measurements or
computer simulations using random number generators. The
micromechanical models commonly make assumptions that
fiber and matrix constituents are homogeneous and isotropic
materials (c.f., transversely isotropic for carbon fiber), and
the composites are macroscopically homogeneous. The effec-
tive thermal properties of the composites are then obtained by
smearing the constituents’ properties. It is well-known that the
composite properties, especially thermal conductivity, are
significantly influenced by additional parameters such as void
contents and imperfect interfaces between the fiber and matrix
constituents.
Several analytical approaches have been developed to predict

the effective thermal conductivity of composites. Among them,
simple analytical solutions based on rule-of-mixture (ROM)
methods are widely adopted in the thermal property calcula-
tion. Longitudinal and transverse thermal conductivities of
the transversely isotropic fiber are denoted as k1f and k2f,
respectively, and that of the isotropic matrix as km. With respect

to an orientation of the transversely isotropic fiber,
two different effective thermal conductivities can be obtained
in the directions parallel and perpendicular to the longitudinal
direction of the fiber, which are denoted as effective
longitudinal (kx) and transverse (kz) thermal conductivities,
respectively. Simple rule-of-mixture (SROM) solutions for
kx and kz can be derived by an electrical resistance analogy
based on a parallel (Voigt) and a serial (Reuss) models,
respectively, as
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where vf is a volume fraction of the fiber. The SROM yields a
sufficiently accurate solution for kx. However, the accuracy
of the SROM solution for kz is questionable because effects
of geometric shape and arrangement of the fibers in the
composites are not considered, especially in the case of two-
dimensional heat flow when the conductivities of fiber and
matrix are orders-of-magnitude different.
More refined models have been derived as the enhanced

rule-of-mixture (EROM) by considering more realistic shapes
of the fiber, such as square and circle. Springer and Tsai17

developed the unitcell model for the square-array fiber
distribution with square- and circular-shaped cross-sections of
fiber. The solution was obtained by dividing the unitcell
domain into several subdomains, and applying the ROM using
a combination of serial (Reuss) and parallel (Voigt) models.
Chamis18 provided the same analytical solution as Springer and
Tsai using the square-array unitcell model for square-shaped
fiber. The EROM solutions of kz for square- and circular-
shaped fibers can be written as17,19
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Figure 6. Schematic of micromechanical modeling for prediction of thermal properties of fiber-reinforced composites.41
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where β = k2f/km, c = (π/vf)
1/2/2, and d = 1/β − 1. Zhou et al.19

derived another analytical expression for the transverse thermal
conductivity of the unidirectional composites with a consid-
eration of the interfacial thermal resistance between the fiber
and matrix phases. The EROM with more realistic fiber shapes
can certainly offer a more accurate solution for kz than the
SROM solution, especially when the thermal conductivities of
fiber and matrix are vastly different.
Benveniste et al.20−26 developed explicit expressions for the

effective transverse thermal conductivity of the composites using
a self-consistent scheme and a Mori−Tanaka mean-field
method.27 They considered various shapes of conducting phase
of materials including particulate, ellipsoidal, infinitely long fiber,
etc., with the presence of interfacial coating and microvoids/
cracks. Hatta and Taya28−30 proposed a similar approach based
on an equivalent inclusion method (EIM) to analytically
calculate the effective thermal conductivity of composites
having aligned or misoriented fibers with and without the
presence of the interfacial coated layer. The EIM is
analogous to an Eshelby’s equivalent inclusion method in
elasticity.31 The EIM takes into account interactions among
the fibers of various orientations. Particularly, the EIM
analytical solution for kz of the aligned infinitely long circular
fiber can be written as

=
β + + β −
β + − β −
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k
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v
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z
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f
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Note that eq 11 can also be derived by a self-consistent
model based on Rayleigh’s potential theory.32 Nan et al.33

used the EIM to predict the effective thermal conductivity of
arbitrary particulate composites with interfacial thermal
resistance with a concept of Kapitza thermal contact
resistance. Results compared well with existing analytical
models and available experimental results for particulate-
reinforced diamond/ZnS, diamond/cordierite, and SiC/Al
composites. The EIM approach was also used by Nan and
Lin34 to predict the effective thermal conductivity of the
nanotube-based composites.
The transverse thermal conductivity of composites appears to

be sensitive to their microstructure morphology, such as ordered
vs randomly distributed fiber spacing, etc., which may not be
readily incorporated in the analytical models. Meanwhile, the
numerical models can offer the flexibility of incorporating more
realistic microstructure morphology. Among several numerical
analyses, Islam and Pramila35 conducted a finite element (FE)
analysis to calculate the effective through-thickness conductivity
of the composites having the square-array pattern of fibers. They
studied the high and low ratios of the thermal conductivities

between fiber and matrix constituents, along with the effect of
the imperfect interface between the fiber and matrix using the
FE analysis. In addition, Noor and Shah36 used the square and
the hexagonal FE models to assess the accuracy of the
thermoelastic and thermal properties of unidirectional fiber-
reinforced composites predicted by several analytical models
including the self-consistent model37 and the EIM. The
comparison of the analytical and numerical FE predictions of
the transverse thermal conductivity with experimental data for
four different composite material systems (two types of graphite
fiber/epoxy matrix, silicon carbide fiber/glass ceramic matrix
and silicon carbide fiber/epoxy matrix) reveals that the
predictions by the EIM are in very good agreement with
those obtained by the hexagonal FE model compared with other
analytical models considered. Rolfes and Hammerschmidt32

conducted analytical, numerical and experimental studies on the
transverse thermal conductivity of the laminated composites.
They considered four analytical formulas including the solutions
obtained by a Rayleigh’s potential theory38 and the self-
consistent model. The numerical calculations carried out by the
FE method on the square- and hexagonal-array unitcell models
show good agreement with Rayleigh’s potential theory and self-
consistent model, respectively, for volume fractions ranging
from 0.4 to 0.7. They also concluded, from the comparison of
the two analytical solutions and their experimental measure-
ment, that the self-consistent formula fits the experimental data
better than the Rayleigh’s model if corrected by void content.
Duschlbauer et al.39 conducted numerical FE simulations for the
thermal conductivity of metal matrix composites with aligned
continuous and aligned short fibers with the consideration of the
thermal barrier at the interface of fiber and matrix constituents.
They modeled the square- and hexagonal-array unitcells as well
as a random multicell consisting of 60 fibers. They used a
contact element for the thermal barrier interface without
discretely modeling the third phase elements, ranging from
perfectly insulating interfaces to perfectly conducting interfaces.
Al-Nassar40 used the FE analysis to predict the thermal
conductivity of microvoided composites.
Sihn and Roy41 recently revisited and investigated the

accuracy and validity of the various micromechanical models
for the calculation of the effective thermal conductivity of
laminated composites. The numerical FE models of the unitcells
with the regular square- and hexagonal-array patterns of fibers as
well as randomly distributed fibers were used to compare these
numerical solutions with the analytical ones using the EROM
and EIM for wide ranges of fiber volume fractions and fiber-to-
matrix conductivity ratios. This study was conducted with
assumptions that the composites are void-free and the interfacial
resistance between the fiber and matrix is negligible. Uniform
temperature boundary conditions were applied on the top and
bottom sides of the unitcell, whereas periodic boundary condi-
tions were applied on the vertical sides of the unitcell. Figure 7a
shows the numerical FE and analytical solutions for the kz
normalized by km with respect to various values of vf. The FE
solutions for the square- and the hexagonal-array models agree
well with each other for vf < 0.5. The square-array model yields
significantly higher kz than the hexagonal one for higher vf,
especially when the fiber periphery is close to the unitcell
boundaries. The analytical solutions by the SROM and the
square-shape EROM underestimate the kz significantly.
Although the square-shape EROM is based on the square-
array unitcell, the kz values are closer to the hexagonal-array
FEM solution. While the circular-shaped EROM agrees well
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with the square-array FE model, the EIM analytical solution
agrees well with the hexagonal-array FE solution. Therefore, the
random distribution of fibers, which is implicitly considered by
the EIM, can be represented well by the hexagonal FE model.
Figure 7b plots the difference between the analytical and FE
solutions. The SROM and two EROM solutions are compared
with the square-array FE one, whereas the EIM solution is
compared with the hexagonal-array FE result. Both the circular-
shaped EROM and the EIM yield less than a 12% difference
between the numerical and analytical solutions for 0 < vf < 0.75,
whereas the SROM and the square-shaped EROM yield a
significant difference, especially at high vf. Figure 8a shows the
numerical FE and analytical solutions for the kz normalized by
km against the variation of thermal conductivity ratios of fiber
and matrix constituents, k2f/km, at vf = 0.6, and Figure 8b shows
the difference between them. For a wide range of k2f/km ratios,
the same trend was observed as before. Note that the circular-
shaped EROM yields a significantly different solution from
the square-array FE solution for small k2f/km. The EIM yields
nearly identical results with the hexagonal-array FE solution for
all k2f/km ratios.
To study the effect of the irregularity of the fiber distribution

on the transverse thermal conductivity of composites, Sihn and
Roy41 also developed a random fiber model by generating
several fibers of same diameter in random locations in a square
box. Random-fiber results were compared with the numerical
and analytical solutions using the regular fiber array models.
The number of fibers in the square cell was determined by the
corresponding fiber volume fraction, which can be determined
by the ratio of the total circular cross-sectional area of all fibers

to the area of the square cell. Direct contacts among the fibers
were avoided by allowing a small gap between adjacent fibers to
prevent difficulties in generating the FE meshes. In this study,
the gap was set as 1.1% of the radius of the circular fiber. Two
scenarios were considered: (i) fibers inside box: the whole
portions of all fibers are located inside the square box, and no
fiber is located across the cell boundary; (ii) fibers outside box:
portions of the fibers are allowed to cross the square boundary.
In the latter case, the fibers across the boundaries were cut
along the boundaries, and only the portions of the fibers within
the square cell are considered for the analysis. Because the fiber
locations near the boundaries are less restricted, a higher
maximum packing density of the fibers can be achieved with the
latter case (ii) than with the former one (i). Five realizations of
the randomization for the fiber locations were generated for
each volume fraction using a random number generator built in
Microsoft Excel. Uniform temperature boundary conditions
were applied to the top and bottom sides of the square box,
while adiabatic boundary conditions were applied to the vertical
sides. Figure 9 shows the normalized kz values predicted by the
random fiber model against the variation of vf at the fiber-to-
matrix thermal conductivity ratio of k2f/km = 666 along with
temperature distributions for several values of vf. Results from
the two scenarios of the fiber confinement in the square cell are
plotted with triangular and circular markers, respectively. For
comparison, the results of the unitcell models with the regular
square- and hexagonal-arrays of fibers are also plotted with
dotted lines as well as the experimental data measured by
Thomburg and Pears42 with a cross marker. Figure 10 shows
the differences of kz between the random fiber prediction and

Figure 8. (a) Normalized through-thickness thermal conductivity (kz/km) of composites predicted by various numerical and analytical methods and
(b) difference between numerical and analytical solutions against various ratios of thermal conductivities of fiber and matrix constituents (k2f/km).

41

Figure 7. (a) Normalized through-thickness thermal conductivity (kz/km) of composites predicted by various numerical and analytical methods and
(b) difference between numerical and analytical solutions against various volume fractions of fiber (vf).

41
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the regular fiber one at each vf. In this figure, the differences were
normalized by the regular fiber solutions with square ((kz)square)
and hexagonal ((kz)hexagonal) arrays, and plotted with square and
triangular markers, respectively. Figure 10 also shows a
comparison of the difference between the experimental data
and two regular fiber solutions in dotted lines. From both
Figures 9 and 10, for the wide range of vf, the following observa-
tions were made.
For low vf (<0.4), both fiber packing scenarios (inside and

outside box) agree well with each other because of the sparcity
of the fibers. For higher vf, the case with the fibers inside the
box tends to yield slightly higher kz than the case with the fibers
outside the box. However, the overall trend is similar to each
other for the wide range of vf. For vf < 0.3, the random fiber

solutions agree well with the regular fiber ones. However, for
higher vf, the random fiber solutions consistently yield higher kz
than both regular fiber cases up to 70% of vf, which is a practical
upper bound of the fiber packing density in composites. The
difference between the random and the regular fiber solutions
can be more than 20% near vf = 0.6. For even higher vf (>0.7),
the random fiber solutions lie between the two regular fiber
ones, following the trend of the square-array unitcell model
more closely. Therefore, the transverse thermal conductivity
of composites with real irregular fiber distributions can be
significantly different from that predicted by the idealized
unitcell models with regular fiber array distributions. Figure 10
indicates that the experimental data are significantly higher than
both regular fiber solutions for vf < 0.65, and then follow the

Figure 10. Difference of predicted transverse thermal conductivity of composites between random- and regular-fiber models against volume fractions
of fiber (vf).

41

Figure 9. Normalized transverse thermal conductivity (kz/km) of composites with randomly distributed fibers against volume fractions of fiber (vf).
41
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trend of the square-array FE solution for higher vf. It was
concluded that, although there might still be other reasons, the
under-prediction of the experimental data compared with the
unitcell model predictions can be explained with the effect of
the random fiber distribution.

4. MESOSCOPIC THERMAL COMPOSITE MODELING

As discussed in the previous section, the effective thermal
conductivity of the composite materials in the macroscale is a
well-defined boundary value diffusion problem. The geometric
location of boundaries between the matrix and filler phases,
along with the thermal conductivity of each material phase,
determines the effective thermal property of the composite. As
the system size decreases, two distinct features, which are
irrelevant and negligible at the macroscale, gradually emerge.
One of them regards the resistance of the system to the heat
flow. The total resistance of the system to the heat flux comes
from the bulk materials, either the matrix or the filler, and also
from the interface between them. Although the interface
thermal resistance can usually be neglected in large-scale
systems, the enhanced surface-to-volume ratio in the small-scale
system, especially for nanoscale devices, allots a significant
portion of the total resistance to the interface. The magnitude
of the interface resistance can be conveniently represented with
a length scale named the Kapitza length.43 The Kapitza length
of η means that the magnitude of the interface resistance to the
heat flux is comparable to the resistance coming from the bulk
of the material whose thickness is η. For a composite material,
the interface resistance can be neglected only when both the
interparticle separation distance and filler size are much larger
than the Kapitza length.
The other additional feature regards the very definition of

thermal conductivity. Traditionally, the thermal modeling in the
engineering scale relied on the heat diffusion with a well-defined
thermal conductivity. However, as either the interparticle
distance or the filler size decreases close to the mean free
path of the energy carrier, the thermal conductivity becomes
dependent on the size and shape of the boundary and ceases to
be a material property. This size and shape dependence of the
thermal conductivity is associated with the finiteness of the
Kundson number which is defined as the ratio of the carrier
mean free path to a representative system length-scale.
When the system size is small enough so that the Kapitza

length and the carrier mean free path must be considered, but
still too large for a microscopic simulation involving atomistic
degrees of freedom, a mesoscopic modeling strategy is required.
The Boltzmann kinetic equation has long been the favored
choice, because the formalism relies on the carrier distribution
function, whose well established coarse graining procedure links
the carrier microdynamics with the macroscopic hydro-
dynamics.44−46 In this section, the Kapitza length and the finite
Knudson number are realized numerically using the mesoscopic
lattice Boltzmann Peierls Callaway (LBPC) equation for multi-
phase phonon gas.47−49

First, the core machinery of the LBPC equation is reviewed.
Guyer was the first, adopting the lattice Boltzmann scheme to
the Boltzmann Peierls Callaway phonon kinetic equation, to
propose the LBPC equation,47
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Here, ni
σ is the probability density function of the phonon with

the polarization σ and momentum pci, where p is a free parameter
to convert the lattice unit of momentum to the real unit of
phonon crystal momentum, and ci is the velocity vector
connecting the lattice node at r with the neighboring node at
r + ciδt. In a specific LB model, the physical coordinate space and
the momentum space are discretized coherently by the set of finite
number of velocity vectors, ci. Regarding features dependent on
the specifics of the LB model, refer to references.46−48 c0 is the unit
speed of LB model; c0 = δx/δt, where δx is the lattice spacing and
δt is the discrete time-step used to update the distribution
function. Δi(r,t) is the Callaway collision operator,50
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where ni,N
σ,eq and ni,U

σ,eq are the local displaced Planck distribution and
the local Planck distribution of phonons respectively, toward
which non-equilibrium ni

σ linearly relaxes with time parameters
τU and τN. A discussion on the functionality of local equilibrium
distributions will follow in the next paragraph. Here, an
important feature to mention is that the spatiotemporal scale
of the model is determined by the collision operator. The
Callaway collision operator does not treat the collision event
with any microscopic rigor, but regards the whole phonon
collision process collectively as a mechanism to restore the local
equilibrium phonon distributions. The mesoscopic character of
the LBPC model is due to this coarse-grained description of the
phonon collision process. To shorten the discussion of the
model and steer the focus swiftly to the Kapitza length and the
phonon mean free path, further discussion on the local
equilibrium distributions will be based on a simplified model
with assumptions of a single polarization and vg

σ = c. An
extended formalism for multipolarization and multigroup
velocity can be found elsewhere.49

At the ambient temperature of T0 and the zero phonon drift
velocity, u0 = 0, a strict global equilibrium establishes the
Planck distribution of phonons on all lattice sites
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Here, εi is the phonon energy and β0 = 1/kbT0, where kb is the
Boltzmann constant. wi is the weight factor depending on the
specific LB model to ensure the isotropy of the fourth-order
lattice tensor. In the LB model, the local equilibrium distribu-
tion is given by the linear perturbation of the global equilibrium
distribution subject to the local disturbances in the macroscopic
collision invariants, which depends on the specific nature of
the collision. The Callaway operator considers two types of
phonon collision processes. One is the energy conserving but
momentum destroying Umklapp process, through which the
nonequilibrium phonon distribution reaches the Planck dis-
tribution. The other is the normal collision process conserving
both the total energy and the total crystal momentum, through
which the phonon distribution restores the displaced Planck
distribution. If a local node at (r,t) is subject to the disturbance
of temperature θ(r,t) = (T(r,t) − T0)/T0 and the phonon drift
velocity u ̃(r,t) = (u(r,t) − u0)/vg from T0 and u0, then the local
equilibrium distribution at (r,t) can be approximated to the first
order of the linear expansion of the global equilibrium as

= − β ε θn w A B( )i i i i i,U
eq

0 (15)
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and

= − β ε θ − β ε ̃n w A B B c u( )i i i i i i i,N
eq

0 0 (16)

where Ai = 1/(exp(β0εi) − 1), Bi = ∂Ai/∂(β0εi) = −Ai(1+Ai)),
and ε = pvg. θ(r,t) and u ̃(r,t) must be known prior to the
collision step to determine local equilibrium distributions, for
which the conservation laws for the collision invariants are
utilized. The macroscopic energy, E, and the momentum, P, are
moments of the phonon distribution function and collision
invariants of the Umklapp and the normal processes,
respectively. The energy conservation of the Umklapp process,
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has θ(t,r) as the only unknown. Once θ(t,r) is determined from
energy conservation, the momentum conservation of the normal
collision process determines the local drift velocity ũ(r,t);
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Other macro-observables such as heat flux can be calculated as
the higher moments of the distribution function.
4.1. Phonon Mean Free Path. A convenient definition of

the phonon mean free path in the Callaway collision operator is
the distance a phonon travels during the linear relaxation time
for the Umklapp collision process; ΛU = vgτU. It refers to the
screening length over which the autocorrelation of the phonon
momentum decreases exponentially due to the momentum
destroying Umklapp process. In typical numerical models
including the LBPC equation, however, the time domain is
usually discretized by δt; therefore, the definition of ΛU as the
momentum screening length is valid only when τU/δt is large.
This delicate issue becomes clear in the case where τU = δt. In
the continuous Boltzmann Peierls Callaway formalism, the local
phonon distribution exponentially relaxes to the local
equilibrium distribution in the finite time scale of τU. However,
in LBPC formalism, because δt is the time unit of the LBPC
equation, τU of δt implies an immediate and complete relaxation of
phonon momentum and therefore zero mean free path.
An alternative definition of the phonon mean free path,

physically meaningful even at small τU/δt, can be derived from
the indirect measurement of the phonon momentum screening
length in the LBPC model. The thermal conductivity, k, is a
material property definable in the limit of small Knudson
number, Kn = Λ/L, where L is the characteristic size of the
material sample. For a homogeneous system with a fixed τU, as k
was measured for various L, it would increase with L and
converge to k∞ asymptotically at large enough L. If the
autocorrelation of the phonon momentum decays exponentially,
so that the screening length can be defined, then the thermal
conductivity of the homogeneous system can be approximated as

=
+ Λ

∞k
k L

L eff (19)

where Λeff is the effective phonon mean free path. When L ≫
Λeff, k asymptotically converges to k∞, the material property of
the sample. In the other limit of L ≪ Λeff, k is proportional to L,
as expected in the phonon dynamics without Umklapp collision.
Therefore, Λeff can be deduced from a series of k measurements
in the system with a fixed τU and varying L. The measurement of
k is performed in the following procedure. For a given system of

a fixed τU, a finite temperature difference is applied on two
opposite faces separated by L using a Planck distribution. k is
given when the measured heat flux is divided by the temperature
gradient. Figure 11 compares Λeff, thus calculated, with ΛU for a

wide range of τU. At large τU/δt, ΛU is a valid definition of the
phonon mean free path within the LBPC model, quantitatively
agreeing with Λeff. However, as τU/δt decreases, ΛU over-
estimates the actual momentum screening length. Λeff disappears
to zero when τU = δt.

4.2. Interface Thermal Resistance. The existence of an
interface between the matrix and the filler results in a finite
resistance to the heat flux, which is signified by a finite drop in
the steady state temperature profile across the interface. The
interface thermal resistance ρ is defined phenomenologically as

ρ =
Δθ

=
η

Q k
I m,f

m,f (20)

where ΔθI and Q are the temperature drop and the heat flux
across the interface, respectively. km,f is the thermal conductivity
of either matrix or filler. ηm,f is the interface Kapitza length
based on the thermal conductivity of either matrix or filler. An
important fact to be reminded is that, among those parameters
associated with the interface, ρ and ηm,f are local properties of
the interface. ΔθI and Q depend on global conditions, such as
the location of the interface and the surface-to-volume ratio of
the total system. Because the Boltzmann kinetic equation works
on the distribution function, not on phenomenological
parameters, the LBPC equation requires a scheme to indirectly
control ρ via phonon distribution functions.
In the recently proposed LBPC model for multiphase

phonon gas,49 following the spirit of the Callaway operator
for bulk phonon collisions, the interface phonon collision is
treated as a linear relaxation process of the phonon distribution
function toward a pseudoequilibrium distribution, which is
uniquely determined by the collision invariant. Because the
interface phonon collision is an Umklapp process, the ansatz of
the surface equilibrium distribution follows the Planck
distribution, ni,U

pep = wi(Ai − β0εiBiθ
eff), where θeff is the effective

interface temperature, which is used as a numerical variable to
satisfy the energy conservation principle, not as a physical
interface temperature which is poorly defined. Along with ni,U

pep,
a linear relaxation time parameter τI is associated with the
phonon interface collision process. As shown in Figure 12, it
turns out that ρ and ηm,f as the local parameters of the thermal

Figure 11. The effective phonon mean free path is plotted against the
Umklapp process relaxation time.
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interface are linearly proportional to τI, which is the only free
parameter of the phonon interface collision.
So far, how to realize the interface thermal resistance and the

finite phonon mean free path in the LBPC equation has been
discussed. Both were interpreted and realized as features of the
relaxation process of the nonequilibrium phonon distribution
to the local equilibrium. The finite durations, τU and τI, of the
relaxation processes result in the finite phonon mean free path
in the bulk phonon dynamics and the finite Kapitza length in
the interface phonon dynamics. The LBPC equation finds
applications in the large-scale thermal modeling of systems,
where mesoscale effects must be considered, such as nano-
composite materials where the phonon mean free path is finite
compared to the filler size and the interface resistance plays a
crucial part in the overall thermal resistance (Figure 13).

5. EXPERIMENTAL APPROACHES TO TAILOR
THERMAL TRANSPORT IN NANOCOMPOSITES

The modeling schemes, molecular to microscopic scale,
discussed in prior sections (sections 2−4) outline potential
approaches of tailoring thermal properties at different scales.
The computational predictions provided processing guidelines
for developing the experimental approaches. In this section, two
representative experimental studies are discussed to address the
issue of tailoring thermal transport in polymeric composites by
modifying interface thermal resistance. This issue is discussed
by two different routes:

(1) Dispersing and functionalizing highly thermally con-
ductive fillers in the polymeric matrix,

(2) Developing highly conductive anisotropic thermal inter-
face materials.

5.1. Dispersion and Functionalization of Highly
Thermally Conductive Fillers in the Polymeric Matrix.
It is well-known that polymers have very low thermal
conductivity and are not suited for the design demands in
many thermal management related aerospace applications.
Several research studies have suggested that dispersing and
functionalizing nanofillers could improve the effective thermal
conductivity of the polymeric composites.51−54 The fillers may
either be in the form of fibers or in the form of particles
uniformly distributed in the polymer matrix. While the
thermophysical properties of fiber-filled composites are
anisotropic (except for the very short, randomly distributed
fibers), they are isotropic for particle-filled polymers. The
detailed discussion of previous research efforts has been
reported elsewhere.55

Exfoliated graphite platelets are an alternative promising filler
material for improving the thermo-mechanical properties of the
polymeric matrix. In the 1910s, Aylsworth56 developed and
proposed expanded graphite as reinforcement of polymers.
Lincoln et al.,57 in the 1980s, proposed the dispersion of
intercalated graphite in polymeric resins by conventional
composite processing techniques. Since then, significant
research has been conducted on exfoliated graphite reinforced
polymers using graphite particles of various dimensions and a
wide range of polymers. As a few examples, Drzal et al.53

demonstrated the use of exfoliated graphite platelets to enhance
the thermal and mechanical properties of polymeric resins.
Lafdi et al.58 dispersed exfoliated graphite flakes in an epoxy
resin and observed a twenty-4-fold increase in thermal
conductivity for the 20% graphite flake composite as compared
to the pure resin. Ma et al.59 studied the effect of silane
functionalization of multiwall CNTs on properties of epoxy
composites indicated that grafting silane molecules improved
the dispersion of the nanotubes in epoxy resin thereby
improving the interfacial interactions, mechanical and thermal
properties. This representative study focuses on the chemical
treatment of graphite flakes to make them compatible with the
epoxy system and study the effective thermal, electrical, and
flow properties of the resultant composites.
In this study, chemically functionalized exfoliated graphite-

filled epoxy composites were prepared with load levels from 2
to 20% by weight. Exfoliated graphite (EG) flakes were
supplied by Graftech International Ltd., Parma, OH. The
details of graphite exfoliation are reported elsewhere56 Epon
862/Epicure W was chosen as the model polymeric system for
this study. An accelerating agent, Epicure 537, composed of
organic salts was used to accelerate the curing reaction. Use of

Figure 12. Kapitza length based on the matrix conductivity is plotted
against the interface phonon collision relaxation time. Solid squares are
for the case where the filler material has a heat capacity that is 30 times
larger than that of the matrix. Solid circles are for the case where the
phonon mean free path of the filler is 30 δx. To realize the interface of
a given thermal resistance, different values of the relaxation time
should be used for different filler materials.

Figure 13. Magnitude of heat flux at steady state is shown on the xy
cross section of a three-dimensional spherical particulate composite
system where 2304 spherical high conductivity fillers are dispersed in
the lower conductivity matrix. The filler volume fraction 30%. The
unit of length is δx. Temperature gradient is applied along the
horizontal direction, x, by imposing the fixed temperature boundary
condition at x = 0 δx and x = 128 δx . The heat flux along x direction
is shown as divided by the average heat flux. Filler materials have the
phonon mean free path of 30 δx, whereas the matrix material has zero
phonon mean free path. kf = 30km and ηm = 4 δx at the interface
between the filler and the matrix. Interface resistance is not applied
between touching fillers. Amplified heat flux is shown along the filler
agglomerate.
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an accelerator in the curing reaction helped in ‘‘locking in’’ the
dispersed morphology by enhancing the rate of the curing
reaction. The exfoliated graphite sheets were dispersed in the
epoxy using a Flacktek Speedmixer.
5.1.1. Chemical Modification of the Exfoliated Graphite

Flakes. The grafting reaction was carried out in a mixture of
water/ethanol (25/75 by volume). A quantity of 3 g of γ-APS
(3 aminopropoxyltriethoxy silane) was first introduced into
1000 mL of the mixture of water/ethanol, and the temperature
was kept at 80 °C. Then, 10 g of exfoliated graphite was added
into the above-mentioned solution, and the grafting reaction
was realized, under shearing, for 5 h at 80 °C. The reaction
product was filtered and washed six times using a mixture of
water/ethanol and freeze-dried. The resultant product was
ground and placed in a sealed container for characterization.
X-ray photoelectron spectroscopy (XPS) of the grafted graphite
flakes was performed to verify the grafting of the amine groups
on the graphite flakes.
Compositional analyses, functionalization of the exfoliated

graphite, were made with an XPS system operated at a pressure
of 8 × 10−10 Torr. Binding energy positions were calibrated
using the Au 4f7/2 peak at 83.93 eV and the Cu 3s and Cu 2p3/2
peaks at 122.39 and 932.47 eVo, respectively. The results of the
XPS study are presented in Figures 14 and 15.

Figure 14 shows the C1s spectrum for the as-received
expanded (exfoliated by Graftech International) graphite flakes.
The C1s peak can be deconvoluted into four fitting curves.
Peaks at 284.18, 285.28, 286.1, and 286.7 eV were observed.
The respective percentages are presented in Table 1. Evidence
of −COO, −CO and C−O bonds in the C1s spectrum may
be attributed to the oxidation of the graphite flakes as a result of
the treatment with strong acids during the exfoliation
procedure. The atomic compositions of the as-received oxidized
graphite flakes are presented in Table 2.
The C1s spectrum and N1s spectrum for the silane modified

graphite flakes are presented in Figure 15. The C1s spectrum
for the amine silane modified graphite flakes showed a similar
spectrum to the unmodified one; however a new peak
attributed to Si−C appeared at 282.8 eV with an elemental
composition of silicon at 3.4%. The Si−C peak confirms the
presence of the silane on the graphite flakes after the treatment
with the amine silane. The C1s spectrum for the silane-
modified graphite flakes may be deconvoluted into six peaks at

282.8, 284.18, 285.16, 286.2, 287.78, and 289.2 eV. The
respective percentage compositions of the individual peaks are
presented in Table 1. From Table 1, the peak at 284.18 eV is
attributed to elemental carbon (sp2). The N1s spectrum for
the modified graphite flakes presented in Figure 15 can be
deconvoluted into two peaks at 399.8 and 402.4 eV, respectively.
The predominant peak at 399.8 eV is attributed to a compound
of nitrogen, silicon, carbon and oxygen. The Si 2p spectrum for
the silylated graphite flakes is presented in Figure 16. The Si 2p

Figure 14. C1s spectrum for the expanded graphite flakes.

Figure 15. C1s and N1s spectra for the silylated graphite flakes.

Table 1. Summary of the Relative Percentage of the Carbon
and Respective Assignation

Relative Percentage of Carbon (%)

Si−C Cg sp
2 Cd sp

3 C−O −CO CO−O

BE (eV) 282.8
284.18−
284.5

285.1−
285.3

286−
286.5

287.6−
287.8

289−
289.4

oxidized 0 74.2 4.4 8.1 0 13.3
silylated 3.4 65.7 5.2 11 4.9 9.8

Table 2. Summary of the Relative Percentage of the Carbon
and Respective Assignation

Element (at %)

C O N Si

oxidized 94.35 5.65 0.0 0.0
silylated 83.89 10.5 2.31 3.3
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peak can be deconvoluted into two peaks. The first one at
101.6 eV represents the bonding between silicon and oxygen.
The second peak at 103.3 eV may be attributed to the siloxane
resulting from hydrolysis of the amine silane molecule as part of
the silylation reaction. The N 1s peak shows the presence of
protonated amine at 399.8 eV resulting from the chemisorption
of the amine silane. A schematic of the reaction scheme for
the silylation of the graphite flakes is presented in Figure 17.

The electron-rich nitrogen present in the amino silane enters into
hydrogen bonding with the hydrogen donating oxidized carbon
group on the graphite surface created by the acid treatment. It is
assumed that the amino groups of the chemisorbed graphite
flakes (due to silane coupling agent APS) react with the epoxy
moieties of the resin in a manner similar to the reaction between
epoxy and an amine-based hardener in the bulk phase.
5.1.2. Processing and Characterization of Composites.

Differential scanning calorimetry (DSC) was employed to
determine the amount of accelerator to be used and also to
identify the processing window for dispersion of the nano-
constituents in the resin. DSC scans were run on ∼10 mg
samples enclosed in hermetically sealed Al pans. The samples
were heated from room temperature to 300 °C at a 5 °C/min
heating rate. The DSC scans are shown in Figure 18. The cross-
linking reaction of the epoxy curing is characterized by an
exotherm peak in the DSC heat flow curve. The onset point of
the exotherm corresponds to the gelling or the onset of the first
cross-linking. At that point, the morphology gets “locked-in.”
Thus, the processing window has to be chosen at a temperature
below the gel-point of the thermoset polymer. On the basis of
the DSC scans, it was determined that the dispersion could be
carried out at 60 °C with 3% accelerator without the risk of
starting the curing reaction. In order to test this, an isothermal
DSC experiment at 60 °C was performed. It was observed that

there was no evidence of initiation of the epoxy curing reaction
at 60 °C even after 120 min. The mixing protocol for the
synthesis of all the composites was as follows − Epon 862 and
fillers were mixed in the Flacktek mixer @ 2800 rpm for 8 min.
Subsequently, the Epicure W along with the Epicure 537 was
mixed @ 1000 rpm for 30 s. Two sets of specimens, one with
as-supplied graphite flakes (EXF) and the other with chemically
treated graphite flakes (FN), were synthesized. The loading
levels of the graphite platelets were 2, 4, 8, 16, and 20 wt % of
the epoxy resin.

5.1.3. Rheology of the Composites. Rheology of the
composites was performed on an advanced rheometrics
expansion system (ARES) equipped with a forced convection
oven. ARES is a mechanical spectrometer that is capable of
subjecting a sample to either a dynamic or steady shear strain
deformation and then measuring the resultant torque expended
by the sample in response to this shear strain. Shear strain is
applied by the motor, and the torque is measured by the
transducer. For a set strain amplitude and frequency, actual
sample deformation is determined by the measured motor and
transducer displacement. The flow properties of the composites
were measured in a parallel plate mode at an angular frequency
of 6.28 Hz. The strain exerted on the specimens was 3%, and the
temperature range investigated was 35 − 250 at 5 °C/min. For a
polymer to qualify for vacuum-assisted resin transfer molding
(VARTM), the viscosity has to be less than 3000 cP. The
processing window for polymers is the range of temperature
over which the viscosity remains in the processing regime. The
results of the rheology test are presented in Figure 19. From the
rheology plot, it was observed that the pure polymer has a
viscosity of ∼32 cP at 75 °C. Composites formulated of the
unfunctionalized graphite exceed this viscosity range for any
loading level above 2 wt %. For the functionalized graphite, the
2 wt % and the 4 wt % fall within the processing window of the
VARTM process. The functionalized graphite-based composites
perform better than the unfunctionalized ones in this figure of
merit. Both the 2 and 4 wt % functionalized composites have a
longer processing window than the 2 wt % unfunctionalized
graphite composites.

5.1.4. Thermal Conductivity Characterization. The heat
capacity and thermal conductivity of the specimens were
measured by the Netzsch laser flash diffusivity system, LFA
457. The flash parameters used for this experiment were a laser
voltage of 1922 V, 100% open filter. These laser parameters
resulted in an approximate laser energy of 6.13 Joules incident

Figure 16. Si 2p XPS spectrum of silylated graphite flakes.

Figure 17. Schematic of the silane treatment of the graphite flakes.

Figure 18. DSC scans to determine optimal processing window.
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on the specimen surface. The reference used for the heat
capacity calculation was a 5-mm-thick specimen of POCO
graphite. The reference sample was also coated with a thin layer
of graphite. This instrument and methodology conform to
ASTM E1461−92, “Standard Test Method for Thermal
Diffusivity of Solids by the Flash Method” for the measurement
of thermal diffusivity. The result of the thermal diffusivity test is
presented Table 3.

The thermal conductivities of the different specimens as
measured by the LFA 457 have been plotted and are reported
in Figure 20. The thermal conductivity of the pure Epon
862/W epoxy resin is around 0.2 W/m-K. The thermal
conductivity of the epoxy resin barely changes with the addition
of 2 and 4% untreated exfoliated graphite flakes. At 8% loading,
the thermal conductivity increases from 0.2 W/m-K to
0.5 W/m-K. As the filler concentration is further increased to
16%, the thermal conductivity increases 9-fold to ∼2 W/m-K.
Thermal conductivity increases 19-fold compared to the pure

resin (0.2 W/m-K to 4 W/m-K with a filler concentration of
20%. The thermal properties of the chemically modified
graphite flake composites exhibit similar behavior to the
untreated composites at low filler levels (until 4% loading). At
8% filler concentration, the thermal conductivity value of the
treated composites is nearly double that of the untreated
composites. A similar improvement in thermal conductivity is
noted for all the higher concentrations of the treated graphite
flake composites. Addition of 20% treated graphite flakes in the

epoxy resin increases the thermal conductivity of the epoxy resin
to 5.8 W/m-K − a 28-fold improvement. Debelak et al.58

reported the thermal conductivity of exfoliated graphite-epoxy
composites with graphite fillers of three different sizes. In their
study, they used filler sizes of 297, 150, and 90 μm. The highest
thermal conductivity achieved in that study at 20% filler loading
for all the different sizes was 4.3 W/m-K. That corresponds well
with the thermal conductivity results of the untreated graphite
composites used in this study. In comparison, the silylated
graphite composites at 20% loading level had a thermal
conductivity of 5.8 W/m-K, a 35% increase due to the silylation
of the graphite flakes.
In summary, the above experimental investigation shows how

functionalization can help in increasing the effective thermal
conductivity of nanocomposites by reducing interface thermal
resistance at the graphite/polymeric interface and is in full
agreement with the modeling studies discussed before. XPS
studies revealed that chemically functionalizing the nanoparticles
made them form covalent bonds with the matrix thereby
increasing the thermal conductivity of the overall system. Though
dispersing functionalized, thermally conductive nanoparticles in
the polymeric matrix increased the thermal conductivity 21-fold,

Figure 19. Viscosity profiles for the unfunctionalized and functionalized graphite composites.

Table 3. Results of the Thermal Diffusivity Experiment

specimen Cp (J/g-K) diffusivity (mm2/s) K W/m-K

neat 1.06 0.157 0.195
FN2 0.966 0.267 0.303
FN4 0.966 0.384 0.443
FN8 1.000 0.993 1.235
FN16 1.000 2.644 3.268
FN20 1.177 4.152 5.864
EXF2 0.779 0.278 0.26
EXF4 0.8 0.342 0.319
EXF8 0.733 0.582 0.578
EXF16 0.801 2.459 2.267
EXF20 0.703 4.1501 4.265

Figure 20. Thermal conductivity plot for the graphite - epoxy
composite.
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the processability, as measured by the viscosity increased,
rendering the system outside the processing window.
5.2. Development of Highly Conductive Anisotropic

Thermal Interface Materials. Thermal Interface Materials
(TIM) used for efficient heat dissipation from electronic
components is gaining increased attention. Thermal conducting
pads made with various conductive fillers are widely used
commercially. CNTs, with their exceptional thermal properties,
are an ideal candidate for TIM applications. For example, Huang
et al. have developed TIM based on aligned carbon nanotubes
embedded in an elastomer.60 Though they achieved a 120%
enhancement of thermal conductivity using the nanocomposite
film, the achieved value of 1.21 W/m-K was much less than the
theoretical thermal conductivity of aligned carbon nanotubes.
Besides TIM, the through-thickness thermal conductivity in
adhesive joints is very low, often limited by the low thermal
conductivity of the resin used as well as interfacial imperfections.
Thus, in an effort to enhance the heat transfer efficiency at
thermal interfaces, our recent study is discussed, incorporating
vertically aligned carbon nanotubes to improve the through-
thickness thermal conductivity in adhesive joints.
For this representative study, multi walled carbon nanotube

(MWCNT) films were grown on silicon substrates by chemical
vapor deposition. The aligned CNT films were prepared by
pyrolyzing iron(II) phthalocyanine under Ar/H2 at 900 °C as
described in detail elsewhere.61,62 The average diameter of the
tubes was 30 nm and the average height of the MWCNT film was
30 μm. Figure 21 shows the scanning electron micrograph of the
as-produced MWCNT film. It is clear that as grown, aligned
nanotubes are not perfectly aligned vertically. Though the vertical
alignment of the nanotubes is evident from the SEM image, there
are some obvious regions of imperfections, specifically bent tubes.
5.2.1. Experimental Development of the Thermal Interface

Material. The wafer with the MWCNT side facing upward was
dipped in a beaker containing a 10% Epon 862/W−acetone
solution. The film was then kept in a vacuum oven at 60 °C for
2 h for the solvent to escape. The epoxy was then cured at
177 °C for 2 h. Figure 22 shows a cross-sectional view of the
MWCNT film infused with the epoxy. The epoxy−MWCNT
film was then peeled off the quartz substrate by etching with a
10% HF solution. The nanotube tips were exposed selectively
by etching the film surface with 32 W RF oxygen plasma for
30 min. SEM images of the film after the plasma etching are shown
in Figure 23. It can be observed from Figure that the nanotube tips
are clipped due to the plasma etching. The side of the film which
was previously anchored to the substrate was similarly etched in
O2/Ar RF plasma under the above-mentioned conditions.
Next, a 900 Å layer of gold was thermally evaporated on both

sides of the film. Highly oriented pyrolytic graphite (HOPG)
adherent face sheets were sputter-coated with Au−Pd for
3 min. Then, a thin layer of Indium metal was melt-coated on
the graphite adherents’ surfaces and the epoxy-nanotube film
(served as a transition zone). Finally, the epoxy-nanotube film
was sandwiched between the graphite face sheets and fused
together by heating at 175 °C. A schematic of the assembled
device is shown in Figure 24.
5.2.2. Thermal Transport Characterization. Bulk thermal

diffusivity measurements were measured using a Netzsch Laser
Flash apparatus under nitrogen purge. The laser flash technique
allows measuring the thermal diffusivity (h) of solid materials
over a temperature range of −180 to 2000 °C. The laser flash
(or heat pulse) technique consists of applying a short duration
(<1 ms) heat pulse to one face of a parallel-sided sample and

monitoring the temperature rise on the opposite face as a
function of time. This temperature rise is measured with an
infrared detector. A laser is used to provide the heat pulse.
The thermal diffusivity is measured as

= ϖ
π

h
L

t

2

1/2 (21)

where, ϖ is a constant, L is the thickness of the specimen and t1/2
is the time for the rear surface temperature to reach half its
maximum value. Thermal conductivity can be obtained from the
laser flash measurements by knowing the heat capacity at constant
pressure (Cp) and the density (ρ) of the specimen and is given by

= ·ρ·k C hp (22)

The heat capacity of the samples was measured with the laser
flash method by comparing the temperature rise of the sample to
the temperature rise of a POCO graphite reference sample of
known specific heat, tested under the same conditions. Heat
capacity was calculated on the basis of eq 23.

=
Δ

Δ
C

mC T

m T

( )

( )p, sample
p ref

sample (23)

Figure 21. SEM micrograph of cross-section of as produced MWCNT
Film.

Figure 22. SEM micrograph of cross-section of epoxy-infused
MWCNT film before plasma etching.
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The length, width, height, and weight for the different samples
were accurately measured. Densities of the samples were
calculated on the basis of the ratio of the measured weight to
measured volume. Based on the heat capacity and thermal
diffusivity measurements, the thermal conductivity for the device
and a graphite reference was determined at 24 °C, from eq 22
above. Four sets of samples were evaluated, the HOPG face-sheet,
HOPG layers bonded by epoxy, HOPG layers bonded by indium,
and HOPG layers bonded by indium with the modified
MWCNT film in between. The thermal conductivity values for
the samples measured are presented in Figure 25. The measured

thermal conductivities for the graphite face sheet, the face sheets
bonded by epoxy adhesive, face sheet bonded by Indium, and the
actual device were found to be 400, 1.1, 9.2, and 262 W/m-K,
respectively.

Summarizing the effort, by engineering the interface in the
adhesively bonded joint, excellent through-thickness thermal
conductivity was achieved for the developed device. The
diffusion bonding between the gold-coated nanotube tips, the
indium and the gold-coated graphite face sheets resulted in
lowering of the thermal interfacial resistance thus enhancing the
interfacial thermal transport.

6. CONCLUSIONS

The effective thermal properties of polymeric composite
materials are often dictated by the interface thermal resistance.
Modeling (atomistic, meso- and microscale) and experimental
approaches to address the thermal composite were discussed.
For the matrix phase thermal property estimates, both
equilibrium and nonequilibrium molecular dynamics simulation
methods were reviewed to estimate the thermal conductivity for
the epoxy system. The analysis of the different contributions
toward the heat flux autocorrelation function suggested that
virial contributions from nonbonded van der Waals interactions
dominate the thermal conductivity with negligible contributions
from bonded and electrostatic interactions. Given the dominant
contribution of van der Waals interactions, the higher thermal
conductivity of the epoxy network (compared to its uncross-
linked counterparts) is attributed to the densification of the
network during cross-linking, which enhances neighboring
nonbonding interaction. When carbon nanotubes are added as
filler to an epoxy matrix, the Kaptiza conductance in the filler−
matrix interface was found to follow a linear increase with the
degree of functionalization up to 2.5% CNT functionalization.
However, the sidewall functionalization of CNT, as structural
defects, is also expected to lower the through-axis thermal
conductivity of CNT.
At the composite level (i.e., at the microscopic scale of fibers

embedded within the matrix phase), micromechanical models
with regular and randomly distributed fibers were developed for
the study of transverse thermal conductivity of laminated
composites. Both analytical and numerical FE solutions were
reproduced and reinvestigated. A parametric study was
conducted by varying wide ranges of fiber volume fractions
and fiber-to-matrix thermal conductivity ratios. The numerical
solutions were compared with the analytical solutions from the
simple rule of mixture (SROM), enhanced rule of mixture
(EROM), and the more advanced equivalent inclusion method
(EIM). Compared with FE solutions, it was found that the EIM

Figure 23. SEM micrograph of epoxy-NWCNT film after plasma etching (View normal to MWCNT film plane).

Figure 24. Schematic view of the assembled device.

Figure 25. Thermal conductivities of measured samples.
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yields a reasonably agreeable solution with the hexagonal-array
FE solution for wide ranges of fiber volume fraction and fiber-
to-matrix thermal conductivity ratios. The hexagonal-array
model represents the composite microstructure more closely
than other fiber distribution models, and thus the EIM can be
useful to quickly obtain a reasonable solution without the FE
calculation in predicting not only the transverse thermal
conductivity, but other physical transverse properties of the
laminated composites including the transverse modulus, trans-
verse electrical conductivity, etc. The randomness of the fiber
distribution in composites was studied by building the random
fiber model. Comparison of the results with regular-fiber models
indicates that the transverse thermal conductivity of composites
can significantly be affected by the random fiber distributions,
especially at high volume fraction. In this case, the random fiber
solutions consistently yield higher conductivity than the
idealized regular fiber ones up to a practical upper bound of
the fiber packing density in composites. It was shown that the
predictions with the random fiber distribution agree well with
the experimental data, which indicated the effect of the random
fiber distribution can be a reason for the under-prediction of the
experimental data compared with the unitcell model predictions.
The effective transverse thermal conductivity is significantly
influenced not only by the properties of fiber and matrix
constituents and volume contents, but also randomness of the
fiber distributions.
In the less-than-micro spatiotemporal scale of the current

devices of interest in industry (i.e., mesoscale), heat transfer
modeling needs to consider the effects of the finite phonon mean
free path and the interface thermal resistance. On the basis of the
linear relaxation of the nonequilibrium phonon distribution
toward local equilibrium, the lattice Boltzmann Peierls Callaway
(LBPC) equation, with its recently proposed mesoscopic phonon
interface collision rule, can realize the finite phonon mean free
path and multiphase phonon gas with interface thermal resistance.
In the Callaway collision operator, the Umklapp collision
relaxation time determines the phonon mean free path, while
the interface collision relaxation time determines the Kapitza
length, hence the Kapitza resistance. The highly parallelizable LB
numerical scheme enables the LBPC equation to model large
scale simulations efficiently. In view of multiscale integration, it is
worth mentioning that the atomistic scale predictions of the
interface resistance (or conductance) are needed as input to the
LBPC equation to enable mesoscale predictions.
Experimentally, along the direction of what was observed

computationally and in order to enhance the thermal
conductivity of polymeric composite systems, two different
routes were implemented. In the first instance, to enhance the
thermal properties of the matrix phase, chemically functionalized
nanoparticles were dispersed in the epoxy matrix. It was
observed that chemically functionalizing the nanoparticles made
them form covalent bonds with the matrix thereby increasing
the thermal conductivity of the overall system. Though
dispersing functionalized thermally conductive nanoparticles in
the polymeric matrix increased the thermal conductivity by 21-
fold, the composite processability, as measured by the viscosity,
increased significantly, rendering the composite system outside
the processing window. The second effort was focused on
developing highly conductive anisotropic thermal interface
materials. By engineering the interface in the adhesively bonded
joint, excellent through-thickness thermal conductivity was
achieved. The diffusion bonding between the gold coated
nanotube tips, the indium and the gold-coated graphite face

sheets resulted in lowering the thermal interfacial resistance,
thus enhancing the interfacial thermal transport.
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